

Premises

- We will need more electricity in the future.
- Energy from the sun can produce electricity.
- Distributed solar power is a good solution for meeting future electrical needs and keeping energy prices low.

Indiana will need more generation capacity in the future

Source: NASA

Global energy consumption in 2008 was 15TW!

Remember when ...

	1970		2011	Percentage increase
Cost of a 1 st class stamp	\$0.06	USA PIET CLASS TOWNERS	\$0.44	633%
Cost of a regular gallon of gas	\$0.36/gal		\$3.96/gal	1000%
Loaf of bread	\$0.25/loaf		\$2.08/loaf	732%
Average ground beef per pound	\$0.70/lb		\$3.09/lb	341%
Electric power cents per kWh	\$0.017/kWh		\$0.088/kWh	417%

... and if the past predicts the future ...

	2011	······································	2051	Percentage increase
Cost of a 1 st class stamp	44\$	SA PIRST-CLASS FORWAR	\$3.23	633%
Cost of a regular gallon of gas	\$3.96/gal		\$43.56/gal	1000%
Loaf of bread	\$2.08/loaf		\$17.31/loaf	732%
Average ground beef per pound	\$3.09/lb		\$13.63/lb	341%
Electric power cents per kWh	\$0.09/kWh		\$0.47/kWh	<u>417%</u>

... supply and demand will govern

You are my sunshine ...

Surface Ocean Currents

Source: Matthias Loster, 2010

Centralized Generation made sense ... in 1900

Centralized Generation has Drawbacks

- Transmission and distribution costs
- Line loss
- Investment in transmission and distribution networks
- Electrification of rural areas
- Loss of use of ancillary energy produced, e.g., heat
- Grid security and reliability
- Price stability

Distributed Generation

has Advantages

 Improved reliability via disruption prevention for both end user and grid

- May be developed more quickly than central station generators
- Potential to save energy producers and consumers money
- Utilizes existing infrastructure
- Avoids need for new infrastructure

Service Transf

- Rural electrification
- Utilization of heat and power
- Adding generation capacity at customer site

Adding capacity to the overall system

- Gives consumers greater cost stability
- Eliminates line loss
- Alleviates peak demand peak shaving
 Reduces emissions
 Builds redundancy that increases grid security for electric utility
- Diversifies Indiana's energy portfolio

States with Distributed Generation Goals

Indiana's Approach to Distributed Generation

- Indiana has adopted a statutory and regulatory structure for distributed generation.
- Regulations require electricity generated from small-scale, customer-sited technologies (i.e., fuel cells, microturbines, photovoltaics, wind turbines) to be interconnected with large, investor owned electric utilities.
- Indiana's alternative energy production statute in fact requires public utilities and municipally owned utilities to interconnect with and enter into long term contracts for the purchase of electricity from customer-sited alternative energy production facilities with a capacity of less than 80 megawatts.

Source: IURC 2006 Annual Report, 170 IAC 4-4.3, IC 8-1-2.4 et seq.

Solar PV is a good Distributed Generation solution

- Easily located onsite
- Can be incorporated into architecture
- Out-performs other onsite options
- Technological advances are leading to greater efficiencies

We can meet our future generation capacity needs ... and ...

... your cost of electricity stays the same

